\[\boxed{\mathbf{36.}}\]
\[\textbf{а)}\ y = \sin{3x} + \cos{8x}\]
\[\sin{3x} + \cos{8x} = \sin{3(x + 2\pi)} +\]
\[+ \cos{8(x + 2\pi)} =\]
\[= \sin(3x + 6\pi) + \cos(8x + 16\pi) =\]
\[= \sin{3x} + \cos{8x}\]
\[T = 2\pi.\]
\[\textbf{б)}\ y = \sin{7x} \cdot \cos{5x} +\]
\[+ \sin{5x} \cdot \cos{7x}\]
\[\sin{7x} \cdot \cos{5x} + \sin{5x} \cdot \cos{7x} =\]
\[= \sin{(7x + 5x)} = \sin{12x}\]
\[T = \frac{2\pi}{12} = \frac{\pi}{6}.\]
\[\textbf{в)}\ y = \sin{4x} + \cos{10x}\]
\[\sin{4x} + \cos{10x} = \sin{4(x + \pi)} +\]
\[+ \cos{10(x + \pi)} =\]
\[= \sin(4x + 4\pi) +\]
\[+ \cos(10x + 10\pi) = \sin{4x} +\]
\[+ \cos{10x}\]
\[T = \pi.\]
\[\textbf{г)}\ y = \sin{7x} \cdot \cos{5x} -\]
\[- \sin{5x} \cdot \cos{7x}\]
\[\sin{7x} \cdot \cos{5x} - \sin{5x} \cdot \cos{7x} =\]
\[= \sin(7x - 5x) = \sin{2x}\]
\[T = \frac{2\pi}{2} = \pi.\]