\[\boxed{\mathbf{14.}}\]
\[\textbf{а)}\ y = \sqrt{x - 1}\]
\[x - 1 \geq 0\]
\[x \geq 1.\]
\[При\ x \geq 1:\]
\[y \geq 0.\]
\[y_{наим} = 0\ при\ x = 1;\]
\[y_{наиб} - не\ существует.\]
\[\textbf{б)}\ y = \sqrt{x^{2} - 1}\]
\[x^{2} - 1 \geq 0\]
\[(x + 1)(x - 1) \geq 0\]
\[x \leq - 1;\ \ x \geq 1:\]
\[y \geq 0.\]
\[y_{наим} = 0\ при\ x = \pm 1;\]
\[y_{наиб} - не\ существует.\]
\[\textbf{в)}\ y = x^{3}\]
\[x \in R;\]
\[y \in R.\]
\[Нет\ наибольшего\ и\ \]
\[наименьшего\ значения.\]
\[\textbf{г)}\ y = 2^{\sqrt{\sin x}}\]
\[- 1 \leq \sin x \leq 1\]
\[0 \leq \sqrt{\sin x} \leq 1\]
\[0 \leq \sin x \leq 1\]
\[0 + \pi k \leq x \leq \frac{\pi}{2} + 2\pi k.\]
\[1 \leq 2^{\sqrt{\sin x}} \leq 2\]
\[1 \leq y \leq 2.\]
\[y_{наиб} = 2\ при\ x = \frac{\pi}{2} + 2\pi k;\]
\[y_{наим} = 1\ при\ x = \pi k.\]
\[\textbf{д)}\ y = \frac{1}{\sqrt{1 - x^{2}}}\]
\[1 - x^{2} > 0\]
\[x^{2} - 1 < 0\]
\[(x + 1)(x - 1) < 0\]
\[- 1 < x < 1.\]
\[0 < 1 - x^{2} \leq 1\]
\[0 < \sqrt{1 - x^{2}} \leq 1\]
\[\frac{1}{\sqrt{1 - x^{2}}} \geq 1\]
\[y \geq 1.\]
\[y_{наим} = 1\ при\ x = 0;\]
\[y_{наиб} - не\ существует.\]
\[\textbf{е)}\ y = \sqrt[3]{\sin x}\]
\[- 1 \leq \sin x \leq 1\]
\[- 1 \leq \sqrt[3]{\sin x} \leq 1\]
\[- 1 \leq y \leq 1.\]
\[y_{наим} = - 1\ при\ x = - \frac{\pi}{2} + 2\pi k;\]
\[y_{наиб} = 1\ при\ x = \frac{\pi}{2} + 2\pi k.\]