\[\text{x\ }и\ y - данные\ числа.\]
\[1)\ \frac{x - y}{\text{xy}} = \frac{1}{24}\]
\[24(x - y) = xy.\]
\[2)\ x + y = 5(x - y)\]
\[x + y = 5x - 5y\]
\[4x = 6y\]
\[x = 1,5y.\]
\[3)\ Составим\ уравнение:\]
\[24(1,5y - y) = 1,5y \bullet y\]
\[36y - 24y = 1,5y^{2}\]
\[12y - 1,5y^{2} = 0\ \ \ \ \ |\ :1,5\]
\[8y - y^{2} = 0\]
\[y \bullet (8 - y) = 0\]
\[y_{1} = 0;\ \ \ y_{2} = 8;\]
\[x_{1} = 1,5 \bullet 0 = 0;\]
\[x_{2} = 1,5 \bullet 8 = 12.\]
\[4)\ xy \neq 0;\]
\[x \neq 0;\ \ \ y \neq 0.\]
\[Ответ:\ \ 8\ и\ 12.\]