\[1)\ \left\{ \begin{matrix} \sqrt{x + y - 1} = 1\ \ \ \ \ \ \ \ \ \ \\ \sqrt{x - y + 2} = 2y - 2 \\ \end{matrix} \right.\ \]
\[\sqrt{x + y - 1} = 1\]
\[x + y - 1 = 1\]
\[y = 2 - x.\]
\[\sqrt{x - y + 2} = 2y - 2\]
\[\sqrt{x - (2 - x) + 2} = 2(2 - x) - 2\]
\[\sqrt{2x} = 4 - 2x - 2\]
\[\sqrt{2x} = 2 - 2x\]
\[2x = 4 - 8x + 4x^{2}\]
\[4x^{2} - 10x + 4 = 0\]
\[2x^{2} - 5x + 2 = 0\]
\[D = 25 - 16 = 9\]
\[x_{1} = \frac{5 - 3}{2 \bullet 2} = 0,5;\]
\[x_{2} = \frac{5 + 3}{2 \bullet 2} = 2;\]
\[y_{1} = 2 - 0,5 = 1,5;\]
\[y_{2} = 2 - 2 = 0.\]
\[Область\ определения:\]
\[2y - 2 > 0\]
\[2y > 2\]
\[y > 1.\]
\[Ответ:\ \ (0,5;\ 1,5).\]
\[2)\ \left\{ \begin{matrix} \sqrt{3y + x + 1} = 2\ \ \ \ \ \ \ \ \ \ \\ \sqrt{2x - y + 2} = 7y - 6 \\ \end{matrix} \right.\ \]
\[\sqrt{3y + x + 1} = 2\]
\[3y + x + 1 = 4\]
\[x = 3 - 3y.\]
\[\sqrt{2x - y + 2} = 7y - 6\]
\[\sqrt{2(3 - 3y) - y + 2} = 7y - 6\]
\[\sqrt{8 - 7y} = 7y - 6\]
\[8 - 7y = 49y^{2} - 84y + 36\]
\[49y^{2} - 77y + 28 = 0\]
\[D = 5929 - 5488 = 441\]
\[y_{1} = \frac{77 - 21}{2 \bullet 49} = \frac{4}{7};\]
\[y_{2} = \frac{77 + 21}{2 \bullet 49} = 1;\]
\[x_{1} = 3 - \frac{12}{7} = \frac{9}{7};\]
\[x_{2} = 3 - 3 = 0.\]
\[Область\ определения:\]
\[7y - 6 > 0\]
\[7y > 6\]
\[y > \frac{6}{7}.\]
\[Ответ:\ \ (0;\ 1).\]