\[\mathbf{На\ отрез}ке\ \lbrack - 3\pi;\ \pi\rbrack.\]
\[1)\ 2\cos x - \sqrt{3} < 0\]
\[2\cos x < \sqrt{3}\]
\[\cos x < \frac{\sqrt{3}}{2}\]
\[x = \pm \arccos\frac{\sqrt{3}}{2} + 2\pi n =\]
\[= \pm \frac{\pi}{6} + 2\pi n.\]
\[y = \cos x\ и\ y = \frac{\sqrt{3}}{2}:\]
\[- 3\pi \leq x_{1} < - \frac{13\pi}{6}\]
\[- \frac{11\pi}{6} < x_{2} < - \frac{\pi}{6}\]
\[\frac{\pi}{6} < x_{3} \leq \pi.\]
\[2)\ \sqrt{2}\sin x + 1 \geq 0\]
\[\sqrt{2}\sin x \geq - 1\]
\[\sin x \geq - \frac{\sqrt{2}}{2}\]
\[x = ( - 1)^{n + 1} \bullet \arcsin\frac{\sqrt{2}}{2} + \pi n =\]
\[= ( - 1)^{n + 1} \bullet \frac{\pi}{4} + \pi n.\]
\[y = \sin x\ и\ y = - \frac{\sqrt{2}}{2}:\]
\[- 3\pi \leq x_{1} \leq - \frac{11\pi}{4}\]
\[- \frac{9\pi}{4} \leq x_{2} \leq - \frac{3\pi}{4}\]
\[- \frac{\pi}{4} \leq x_{3} \leq \pi.\]
\[3)\ \sqrt{3} + tg\ x \leq 0\]
\[tg\ x \leq - \sqrt{3}\]
\[x = - arctg\ \sqrt{3} + \pi n =\]
\[= - \frac{\pi}{3} + \pi n.\]
\[y = tg\ x\ и\ y = - \sqrt{3}:\]
\[- \frac{5\pi}{2} < x_{1} \leq - \frac{7\pi}{3}\]
\[- \frac{3\pi}{2} < x_{2} \leq - \frac{4\pi}{3}\]
\[- \frac{\pi}{2} < x_{3} \leq - \frac{\pi}{3}\]
\[\frac{\pi}{2} < x_{4} \leq \frac{2\pi}{3}.\]
\[4)\ 3\ tg\ x - 2 > 0\]
\[3\ tg\ x > 2\]
\[tg\ x > \frac{2}{3}\]
\[x = arctg\frac{2}{3} + \pi n.\]
\[y = tg\ x\ и\ y = \frac{2}{3}:\]
\[\text{arctg}\frac{2}{3} - 3\pi < x_{1} < - \frac{5\pi}{2}\]
\[\text{arctg}\frac{2}{3} - 2\pi < x_{2} < - \frac{3\pi}{2}\]
\[\text{arctg}\frac{2}{3} - \pi < x_{3} < - \frac{\pi}{2}\]
\[\text{arctg}\frac{2}{3} < x_{4} < \frac{\pi}{2}.\]