\[1)\sin x < \frac{1}{4};\]
\[x = ( - 1)^{n} \bullet \arcsin\frac{1}{4} + \pi n.\]
\[y = \sin x\ и\ y = \frac{1}{4}:\]
\[- \pi - \arcsin\frac{1}{4} + 2\pi n < x < \arcsin\frac{1}{4} + 2\pi n.\]
\[2)\sin x > - \frac{1}{4}\]
\[x = ( - 1)^{n + 1} \bullet \arcsin\frac{1}{4} + \pi n.\]
\[y = \sin x\ и\ y = - \frac{1}{4}:\]
\[- \arcsin\frac{1}{4} + 2\pi n < x < \pi + \arcsin\frac{1}{4} + 2\pi n.\]
\[3)\ tg\ x - 3 \leq 0\]
\[tg\ x \leq 3\]
\[x = arctg\ 3 + \pi n.\]
\[y = tg\ x\ и\ y = 3:\]
\[- \frac{\pi}{2} + \pi n < x \leq \text{arctg}3 + \pi n.\]
\[4)\cos x > \frac{1}{3}\]
\[x = \pm \arccos\frac{1}{3} + 2\pi n.\]
\[y = \cos x\ и\ y = \frac{1}{3}:\]
\[- \arccos\frac{1}{3} + 2\pi n < x < \arccos\frac{1}{3} + 2\pi n.\]