\[1)\ \sqrt{32^{x} + 4} - \sqrt{\left| 32^{x} - 7 \right|} < 1\]
\[t = 32^{x}:\]
\[\sqrt{t + 4} - \sqrt{|t - 7|} < 1\]
\[\sqrt{t + 4} < 1 + \sqrt{|t - 7|}\]
\[t + 4 < 1 + 2\sqrt{|t - 7|} + |t - 7|.\]
\[t \geq 7:\]
\[t + 4 < 1 + 2\sqrt{t - 7} + t - 7\]
\[2\sqrt{t - 7} > 10\]
\[\sqrt{t - 7} > 5\]
\[t - 7 > 25\]
\[t > 32\]
\[32^{x} > 32\]
\[x > 1.\]
\[t \leq 7:\]
\[t + 4 < 1 + 2\sqrt{7 - t} + 7 - t\]
\[2\sqrt{7 - t} > 2t - 4\]
\[\sqrt{7 - t} > t - 2\]
\[7 - t > t^{2} - 4t + 4\]
\[t^{2} - 3t - 3 < 0\]
\[D = 3^{2} + 4 \bullet 3 = 9 + 12 = 21\]
\[t = \frac{3 \pm \sqrt{21}}{2};\]
\[\frac{3 - \sqrt{21}}{2} < t < \frac{3 + \sqrt{21}}{2}\]
\[\frac{3 - \sqrt{21}}{2} < 32^{x} < \frac{3 + \sqrt{21}}{2}\]
\[x < \log_{32}\frac{3 + \sqrt{21}}{2}.\]
\[Ответ:\ \ \]
\[x \in \left( - \infty;\ \log_{32}\frac{3 + \sqrt{21}}{2} \right) \cup (1;\ + \infty).\]
\[2)\ 3^{x}\left( \sqrt{9^{1 - x} - 1} + 1 \right) < 3\left| 3^{x} - 1 \right|\]
\[\sqrt{3^{2x}\left( \frac{9}{3^{2x}} - 1 \right)} + 3^{x} < 3\left| 3^{x} - 1 \right|\]
\[\sqrt{9 - 3^{2x}} + 3^{x} < 3\left| 3^{x} - 1 \right|\]
\[t = 3^{x}:\]
\[\sqrt{9 - t^{2}} + t < 3|t - 1|.\]
\[t \geq 1:\]
\[\sqrt{9 - t^{2}} + t < 3(t - 1)\]
\[\sqrt{9 - t^{2}} < 2t - 3\]
\[9 - t^{2} < 4t^{2} - 12t + 9\]
\[5t^{2} - 12t > 0\]
\[t(5t - 12) > 0\]
\[t < 0;\ \ \ t > \frac{12}{5};\]
\[3^{x} > \frac{12}{5}\]
\[x > \log_{3}\frac{12}{5}.\]
\[t \leq 1:\]
\[\sqrt{9 - t^{2}} + t < 3(1 - t)\]
\[\sqrt{9 - t^{2}} < 3 - 4t\]
\[9 - t^{2} < 9 - 24t + 16t^{2}\]
\[17t^{2} - 24t > 0\]
\[t(17t - 24) > 0\]
\[t < 0;\ \ \ t > \frac{24}{17}.\]
\[Область\ определения:\]
\[9 - t^{2} \geq 0\]
\[(t + 3)(t - 3) \leq 0\]
\[- 3 \leq t \leq 3\]
\[- 3 \leq 3^{x} \leq 3\]
\[x \leq 1.\]
\[Ответ:\ \ x \in \left( \log_{3}\frac{12}{5};\ 1 \right\rbrack.\]