\[1)\ x^{1 + \lg x} < {0,1}^{- 2}\]
\[\lg x^{1 + \lg x} < \lg 100\]
\[\lg x \bullet \left( 1 + \lg x \right) < 2\]
\[\lg^{2}x + \lg x - 2 < 0\]
\[D = 1 + 8 = 9\]
\[\lg x_{1} = \frac{- 1 - 3}{2} = - 2;\]
\[\lg x_{2} = \frac{- 1 + 3}{2} = 1;\]
\[\left( \lg x + 2 \right)\left( \lg x - 1 \right) < 0\]
\[- 2 < \lg x < 1\]
\[10^{- 2} < x < 10^{1}\]
\[0,01 < x < 10.\]
\[Ответ:\ \ x \in (0,01;\ 10).\]
\[2)\ x^{2\lg x} < 10x\]
\[\lg x^{2\lg x} < \lg{10x}\]
\[\lg x \bullet 2\lg x < \lg 10 + \lg x\]
\[2\lg^{2}x - \lg x - 1 < 0\]
\[D = 1 + 8 = 9\]
\[\lg x_{1} = \frac{1 - 3}{2 \bullet 2} = - \frac{1}{2};\]
\[\lg x_{2} = \frac{1 + 3}{2 \bullet 2} = 1;\]
\[\left( \lg x + \frac{1}{2} \right)\left( \lg x - 1 \right) < 0\]
\[- \frac{1}{2} < \lg x < 1\]
\[10^{- \frac{1}{2}} < x < 10^{1}\]
\[\frac{1}{\sqrt{10}} < x < 10.\]
\[Ответ:\ \ x \in \left( \frac{1}{\sqrt{10}};\ 10 \right).\]
\[3)\ 3 - x < \log_{5}\left( 20 + 5^{x} \right)\]
\[\log_{5}5^{3 - x} < \log_{5}\left( 20 + 5^{x} \right)\]
\[5^{3 - x} < 20 + 5^{x}\]
\[5^{x} + 20 - \frac{5^{3}}{5^{x}} > 0\]
\[5^{2x} + 20 \bullet 5^{x} - 125 > 0\]
\[D = 400 + 500 = 900\]
\[5_{1}^{x} = \frac{- 20 - 30}{2} = - 25;\ \]
\[5_{2}^{x} = \frac{- 20 + 30}{2} = 5;\]
\[\left( 5^{x} + 25 \right)\left( 5^{x} - 5 \right) > 0\]
\[5^{x} > 5\]
\[x > 1.\]
\[Ответ:\ \ x \in (1;\ + \infty).\]