\[1)\log_{\frac{1}{2}}\left( 1 + x - \sqrt{x^{2} - 4} \right) \leq 0\]
\[\log_{\frac{1}{2}}\left( 1 + x - \sqrt{x^{2} - 4} \right) \leq \log_{\frac{1}{2}}\left( \frac{1}{2} \right)^{0}\]
\[1 + x - \sqrt{x^{2} - 4} \geq 1\]
\[x \geq \sqrt{x^{2} - 4}\]
\[x^{2} \geq x^{2} - 4\]
\[0x^{2} \geq - 4\]
\[x \in R.\]
\[Область\ определения:\]
\[x \geq 0;\ \ \ \]
\[x^{2} - 4 \geq 0;\]
\[x \geq 2.\]
\[Ответ:\ \ x \in \lbrack 2;\ + \infty).\]
\[2)\ \frac{1}{\log_{5}(3 - 2x)} - \frac{1}{4 - \log_{5}(3 - 2x)} < 0\]
\[y = \log_{5}(3 - 2x):\]
\[\frac{1}{y} - \frac{1}{4 - y} < 0\]
\[\frac{(4 - y) - y}{y(4 - y)} < 0\]
\[\frac{4 - 2y}{y(4 - y)} < 0\]
\[\frac{2y - 4}{y(y - 4)} < 0\]
\[y < 0;\ \ \ 2 < y < 4.\]
\[1)\ \log_{5}(3 - 2x) < 0\]
\[0 < 3 - 2x < 1\]
\[- 3 < - 2x < - 2\]
\[2 < 2x < 3\]
\[1 < x < 1,5.\]
\[2)\ 2 < \log_{5}(3 - 2x) < 4\]
\[25 < 3 - 2x < 625\]
\[22 < - 2x < 622\]
\[- 622 < 2x < - 22\]
\[- 311 < x < - 11.\]
\[Ответ:\ \ \]
\[x \in ( - 311;\ - 11) \cup (1;\ 1,5).\]