\[\log_{4}x^{2} + \log_{2}^{2}( - x) > 6;\]
\[\log_{2}( - x) + \log_{2}^{2}( - x) > 6.\]
\[1)\ y = \log_{2}( - x):\]
\[y + y^{2} > 6\]
\[y^{2} + y - 6 > 0\]
\[D = 1 + 24 = 25\]
\[y_{1} = \frac{- 1 - 5}{2} = - 3;\]
\[y_{2} = \frac{- 1 + 5}{2} = 2;\]
\[(y + 3)(y - 2) > 0\]
\[y < - 3;\ \ \ y > 2.\]
\[2)\ \log_{2}( - x) < - 3\]
\[0 < - x < 2^{- 3}\]
\[- \frac{1}{8} < x < 0.\]
\[3)\ \log_{2}( - x) > 2\]
\[- x > 2^{2}\]
\[x < - 4.\]
\[Ответ:\ \ \]
\[x \in ( - \infty;\ - 4) \cup \left( - \frac{1}{8};\ 0 \right).\]