Решебник по алгебре и начала математического анализа 11 класс Колягин Задание 888

Авторы:
Год:2020-2021-2022-2023
Тип:учебник

Задание 888

\[1)\ \frac{5x + 4}{x - 3} < 4\]

\[\frac{5x + 4 - 4(x - 3)}{x - 3} < 0\]

\[\frac{5x + 4 - 4x + 12}{x - 3} < 0\]

\[\frac{x + 16}{x - 3} < 0\]

\[- 16 < x < 3.\]

\[Ответ:\ \ x \in ( - 16;\ 3).\]

\[2)\ \frac{2}{x - 4} < 1\]

\[\frac{2 - (x - 4)}{x - 4} < 0\]

\[\frac{2 - x + 4}{x - 4} < 0\]

\[\frac{6 - x}{x - 4} < 0\]

\[\frac{x - 6}{x - 4} > 0\]

\[x < 4;\text{\ \ }\ x > 6.\]

\[Ответ:\ \ x \in ( - \infty;\ 4) \cup (6;\ + \infty).\]

\[3)\ \frac{2}{x + 3} \leq 4\]

\[\frac{2 - 4(x + 3)}{x + 3} \leq 0\]

\[\frac{2 - 4x - 12}{x + 3} \leq 0\]

\[\frac{- 10 - 4x}{x + 3} \leq 0\]

\[\frac{4x + 10}{x + 3} \geq 0\]

\[x < - 3;\ \ \ x \geq - 2,5.\]

\[Ответ:\ \ \]

\[x \in ( - \infty;\ - 3) \cup \lbrack - 2,5;\ + \infty).\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам