\[1)\ \frac{3 - 2x}{3x - 2} < 0\]
\[(3x - 2)(3 - 2x) < 0\]
\[(3x - 2)(2x - 3) > 0\]
\[x < \frac{2}{3};\ \text{\ \ }x > \frac{3}{2}.\]
\[Ответ:\ \ x \in \left( - \infty;\ \frac{2}{3} \right) \cup \left( \frac{3}{2};\ + \infty \right).\]
\[2)\ \frac{10 - 4x}{9x + 2} < 0\]
\[(9x + 2)(10 - 4x) < 0\]
\[(9x + 2)(4x - 10) > 0\]
\[x < - \frac{2}{9};\ \text{\ \ }x > \frac{5}{2}.\]
\[Ответ:\ \ \]
\[x \in \left( - \infty;\ - \frac{2}{9} \right) \cup \left( \frac{5}{2};\ + \infty \right).\]
\[3)\ \frac{18 - 7x}{- 4x^{2} - 1} < 0\]
\[\frac{18 - 7x}{4x^{2} + 1} > 0\]
\[18 - 7x > 0\]
\[- 7x > - 18\]
\[x < \frac{18}{7}.\]
\[Ответ:\ \ x \in \left( - \infty;\ 2\frac{4}{7} \right).\]