\[4 \bullet 2^{3a} = {0,25}^{\frac{a^{2}}{2}}\]
\[2^{2} \bullet 2^{3a} = \left( \frac{1}{4} \right)^{\frac{a^{2}}{2}}\]
\[2^{2 + 3a} = 4^{- \frac{a^{2}}{2}}\]
\[2^{2 + 3a} = 2^{- a^{2}}\]
\[2 + 3a = - a^{2}\]
\[a^{2} + 3a + 2 = 0\]
\[D = 9 - 8 = 1\]
\[a_{1} = \frac{- 3 - 1}{2} = - 2;\]
\[a_{2} = \frac{- 3 + 1}{2} = - 1.\]
\[Ответ:\ - 2;\ - 1.\]