\[1)\ \sqrt[3]{x^{6} - 26} + 2\sqrt[6]{x^{6} - 26} = 3\]
\[y = \sqrt[6]{x^{6} - 26}:\]
\[y^{2} + 2y - 3 = 0\]
\[D = 4 + 12 = 16\]
\[y_{1} = \frac{- 2 - 4}{2} = - 3;\]
\[y_{2} = \frac{- 2 + 4}{2} = 1.\]
\[Подставим:\]
\[\sqrt[6]{x^{6} - 26} = 1\]
\[x^{6} - 26 = 1\]
\[x^{6} = 27\]
\[x^{2} = 3\]
\[x = \pm \sqrt{3}.\]
\[Ответ:\ \pm \sqrt{3}.\]
\[2)\ \sqrt[3]{x} + \sqrt[3]{x + 1} + \sqrt[3]{x + 2} = 0\]
\[Функция\ монотонно\ \]
\[возрастает:\]
\[y = x^{\frac{1}{3}} + (x + 1)^{\frac{1}{3}} + (x + 2)^{\frac{1}{3}};\]
\[y^{'} =\]
\[= \frac{1}{3}x^{- \frac{2}{3}} + \frac{1}{3}(x + 1)^{- \frac{2}{3}} + \frac{1}{3}(x + 2)^{- \frac{2}{3}} =\]
\[= \frac{1}{3}\left( \frac{1}{\sqrt[3]{x^{2}}} + \frac{1}{\sqrt[3]{(x + 1)^{2}}} + \frac{1}{\sqrt[3]{(x + 2)^{2}}} \right) > 0.\]
\[Методом\ перебора:\]
\[y( - 1) = \sqrt[3]{- 1} + \sqrt[3]{0} + \sqrt[3]{1} = 0.\]
\[Ответ:\ - 1.\]