\[1)\ 2\sqrt{x + 4} - \sqrt{1 - x} = \sqrt{x + 5}\]
\[2\sqrt{x + 4} = \sqrt{x + 5} + \sqrt{1 - x}\]
\[4x + 10 = 2\sqrt{x - x^{2} + 5 - 5x}\]
\[\sqrt{5 - x^{2} - 4x} = 2x + 5\]
\[5 - x^{2} - 4x = 4x^{2} + 20x + 25\]
\[5x^{2} + 24x + 20 = 0\]
\[D = 576 - 400 = 176\]
\[x = \frac{- 24 \pm \sqrt{176}}{2 \bullet 5} =\]
\[= \frac{- 24 \pm 2\sqrt{44}}{10} = \frac{- 12 \pm \sqrt{44}}{5}.\]
\[Область\ определения:\]
\[x \geq - 4;\ \ \ x \leq 1;\text{\ \ \ }\]
\[x \geq - 5;\text{\ \ \ x} \geq - 2,5.\]
\[Ответ:\ \ \frac{- 12 + \sqrt{44}}{5}.\]
\[2)\ \sqrt{x + 2} + \sqrt{3 - 2x} = \sqrt{x^{2} - 1}\]
\[2\sqrt{3x - 2x^{2} + 6 - 4x} = x^{2} + x - 6\]
\[2\sqrt{- x^{2} - \left( x^{2} + x - 6 \right)} = x^{2} + x - 6\]
\[Область\ определения:\]
\[x^{2} + x - 6 \geq 0\]
\[- x^{2} - \left( x^{2} + x - 6 \right) \geq 0\]
\[- x^{2} \geq 0\text{\ \ \ }\]
\[x^{2} \leq 0.\]
\[Ответ:\ \ корней\ нет.\]