\[2x^{3} + mx^{2} + nx + 12 = 0.\]
\[1)\ Первый\ корень:\]
\[2 \bullet 1^{3} + m \bullet 1^{2} + n \bullet 1 + 12 = 0\]
\[2 + m + n + 12 = 0\]
\[n = - m - 14.\]
\[2)\ Второй\ корень:\]
\[2 \bullet ( - 2)^{3} + m \bullet ( - 2)^{2} + n \bullet ( - 2) + 12 = 0\]
\[- 16 + 4m - 2n + 12 = 0\]
\[2n = 4m - 4\]
\[n = 2m - 2\]
\[- m - 14 = 2m - 2\]
\[3m = - 12\]
\[m = - 4;\]
\[n = 4 - 14 = - 10.\]
\[3)\ Третий\ корень:\]
\[2x^{3} - 4x^{2} - 10x + 12 = 0\]
\[2\left( x^{3} - 2x^{2} - 5x + 6 \right) = 0\]
\[2(x - 1)(x + 2)(x - 3) = 0\]
\[x = 3.\]
\[Ответ:\ \ 3.\]