\[y = x^{3} - 6x^{2} + 11x - 6.\]
\[1)\ Все\ целые\ корни:\]
\[\pm 1;\ \pm 2;\ \pm 3;\ \pm 6.\]
\[2)\ Выполним\ проверку:\]
\[y(1) = 1 - 6 + 11 - 6 = 0;\]
\[y(2) = 8 - 24 + 22 - 6 = 0;\]
\[y(3) = 27 - 54 + 33 - 6 = 0.\]
\[3)\ Других\ корней\ нет:\]
\[(x - 1)(x - 2)(x - 3) =\]
\[= \left( x^{2} - 2x - x + 2 \right)(x - 3) =\]
\[= \left( x^{2} - 3x + 2 \right)(x - 3) =\]
\[= x^{3} - 3x^{2} + 2x - 3x^{2} + 9x - 6 =\]
\[= x^{3} - 6x^{2} + 11x - 6 = y.\]
\[Ответ:\ \ x_{1} = 1;\ x_{2} = 2;\ x_{3} = 3.\]