\[1)\ \frac{x^{2} - x + 3}{x^{2} - x + 1} + \frac{x^{2} - x + 4}{x^{2} - x + 2} = 5\]
\[y = x^{2} - x:\]
\[\frac{y + 3}{y + 1} + \frac{y + 4}{y + 2} = 5\]
\[3y^{2} + 5y = 0\]
\[y(3y + 5) = 0\]
\[y_{1} = - \frac{5}{3};\text{\ \ \ }y_{2} = 0.\]
\[1)\ x^{2} - x = - \frac{5}{3}\]
\[3x^{2} - 3x + 5 = 0\]
\[D = 9 - 60 = - 51 < 0\]
\[x \in \varnothing.\]
\[2)\ x^{2} - x = 0\]
\[x(x - 1) = 0\]
\[x_{1} = 0;\text{\ \ \ }x_{2} = 1.\]
\[Ответ:\ \ 0;\ 1.\]
\[2)\ \frac{x^{2} + x + 2}{x^{2} + x + 1} + \frac{x^{2} + x + 6}{x^{2} + x + 3} = 4\]
\[y = x^{2} + x:\]
\[\frac{y + 2}{y + 1} + \frac{y + 6}{y + 3} = 4\]
\[2y^{2} + 4y = 0\]
\[2y(y + 2) = 0\]
\[y_{1} = - 2;\text{\ \ \ }y_{2} = 0.\]
\[1)\ x^{2} + x = - 2\]
\[x^{2} + x + 2 = 0\]
\[D = 1 - 8 = - 7 < 0\]
\[x \in \varnothing.\]
\[2)\ x^{2} + x = 0\]
\[x(x + 1) = 0\]
\[x_{1} = - 1;\text{\ \ \ }x_{2} = 0.\]
\[Ответ:\ - 1;\ 0.\]