\[y = x^{2} + 2x - 3:\]
\[(y - 21)y = 100\]
\[y^{2} - 21y - 100 = 0\]
\[D = 441 + 400 = 841\]
\[y_{1} = \frac{21 - 29}{2} = - 4;\]
\[y_{2} = \frac{21 + 29}{2} = 25.\]
\[1)\ x^{2} + 2x - 3 = - 4\]
\[x^{2} + 2x + 1 = 0\]
\[(x + 1)^{2} = 0\]
\[x = - 1.\]
\[2)\ x^{2} + 2x - 3 = 25\]
\[x^{2} + 2x - 28 = 0\]
\[D = 4 + 112 = 116\]
\[x = \frac{- 2 \pm \sqrt{116}}{2} = \frac{- 2 \pm 2\sqrt{29}}{2} =\]
\[= - 1 \pm \sqrt{29}.\]
\[Ответ:\ - 1;\ - 1 \pm \sqrt{29}.\]
\[y = x^{2} - 5x + 4:\]
\[y(y + 2) = 4\]
\[y^{2} + 2y - 4 = 0\]
\[D = 4 + 16 = 20\]
\[y = \frac{- 2 \pm \sqrt{20}}{2} = \frac{- 2 \pm 2\sqrt{5}}{2} =\]
\[= - 1 \pm \sqrt{5}.\]
\[Подставим:\]
\[x^{2} - 5x + 4 = - 1 \pm \sqrt{5}\]
\[x^{2} - 5x + \left( 5 \pm \sqrt{5} \right) = 0\]
\[D = 5^{2} - 4\left( 5 \pm \sqrt{5} \right) =\]
\[= 25 - 20 \mp 4\sqrt{5} =\]
\[= 5 \mp 4\sqrt{5} = 5 + 4\sqrt{5}\]
\[x = \frac{5 \pm \sqrt{5 + 4\sqrt{5}}}{2}.\]
\[Ответ:\ \ \frac{5 \pm \sqrt{5 + 4\sqrt{5}}}{2}.\]