\[1)\sin\left( a + \frac{\pi}{3} \right) - \sin\left( a - \frac{\pi}{3} \right) =\]
\[= \sqrt{3}\cos a\]
\[Преобразуем\ левую\ часть:\]
\[\sin\left( a + \frac{\pi}{3} \right) - \sin\left( a - \frac{\pi}{3} \right) =\]
\[= 2\sin\frac{a + \frac{\pi}{3} - a + \frac{\pi}{3}}{2} \bullet \cos\frac{a + \frac{\pi}{3} + a - \frac{\pi}{3}}{2} =\]
\[= 2 \bullet \sin\frac{\pi}{3} \bullet \cos a =\]
\[= 2 \bullet \frac{\sqrt{3}}{2} \bullet \cos a = \sqrt{3}\cos a.\]
\[Тождество\ доказано.\]
\[2)\cos\left( \frac{\pi}{6} + a \right) + \cos\left( \frac{\pi}{6} - a \right) =\]
\[= \sqrt{3}\cos a;\]
\[Преобразуем\ левую\ часть:\]
\[\cos\left( \frac{\pi}{6} + a \right) + \cos\left( \frac{\pi}{6} - a \right) =\]
\[= 2\cos\frac{\frac{\pi}{6} + a + \frac{\pi}{6} - a}{2} \bullet \cos\frac{\frac{\pi}{6} + a - \frac{\pi}{6} + a}{2} =\]
\[= 2 \bullet \cos\frac{\pi}{6} \bullet \cos a =\]
\[= 2 \bullet \frac{\sqrt{3}}{2} \bullet \cos a = \sqrt{3}\cos a.\]
\[Тождество\ доказано.\]