\[\log_{c}\frac{a + b}{3} = \frac{1}{2}\left( \log_{c}a + \log_{c}b \right);\]
\[a > 0;\ \text{\ b} > 0;\ \]
\[a^{2} + b^{2} = 7ab;\]
\[c > 0;\text{\ c} \neq 1.\]
\[\log_{c}\frac{a + b}{3} = \frac{1}{2}\log_{c}\left( \frac{a + b}{3} \right)^{2} =\]
\[= \frac{1}{2}\log_{c}\frac{a^{2} + 2ab + b^{2}}{9} =\]
\[= \frac{1}{2}\log_{c}\frac{7ab + 2ab}{9} =\]
\[= \frac{1}{2}\log_{c}\frac{9ab}{9} = \frac{1}{2}\log_{c}\text{ab} =\]
\[= \frac{1}{2}\left( \log_{c}a + \log_{c}b \right).\]
\[Что\ и\ требовалось\ доказать.\]