\[1)\ \frac{x^{3} + 2x^{2} + 9}{x^{3} - 2x^{2} + 4x - 3} =\]
\[= \frac{(x + 3)(x^{2} - x + 3)}{(x - 1)(x^{2} - x + 3)} = \frac{x + 3}{x - 1}.\]
\[Числитель\ дроби:\]
\[1\] | \[2\] | \[0\] | \[9\] | |
---|---|---|---|---|
\[- 3\] | \[1\] | \[- 1\] | \[3\] | \[0\] |
\[Знаменатель\ дроби:\]
\[1\] | \[- 2\] | \[4\] | \[- 3\] | |
---|---|---|---|---|
\[1\] | \[1\] | \[- 1\] | \[3\] | \[0\] |
\[2)\ \frac{x^{3} + 2x^{2} + 2x + 1}{2x^{3} + x^{2} + 1} =\]
\[= \frac{(x + 1)\left( x^{2} + x + 1 \right)}{(x + 1)\left( 2x^{2} - x + 1 \right)} =\]
\[= \frac{x^{2} + x + 1}{2x^{2} - x + 1}.\]
\[Числитель\ дроби:\]
\[1\] | \[2\] | \[2\] | \[1\] | |
---|---|---|---|---|
\[- 1\] | \[1\] | \[1\] | \[1\] | \[0\] |
\[Знаменатель\ дроби:\]
\[2\] | \[1\] | \[0\] | \[1\] | |
---|---|---|---|---|
\[- 1\] | \[2\] | \[- 1\] | \[1\] | \[0\] |
\[3)\ \frac{x^{4} - 2x^{3} + x - 2}{2x^{4} - 3x^{3} - x - 6} =\]
\[= \frac{(x - 2)(x + 1)\left( x^{2} - x + 1 \right)}{(x - 2)(x + 1)\left( 2x^{2} - x + 3 \right)} =\]
\[= \frac{x^{2} - x + 1}{2x^{2} - x + 3}.\]
\[Числитель\ дроби:\]
\[1\] | \[- 2\] | \[0\] | \[1\] | \[- 2\] | |
---|---|---|---|---|---|
\[2\] | \[1\] | \[0\] | \[0\] | \[1\] | \[0\] |
\[- 1\] | \[1\] | \[- 1\] | \[1\] | \[0\] | \[-\] |
\[Знаменатель\ дроби:\]
\[2\] | \[- 3\] | \[0\] | \[- 1\] | \[- 6\] | |
---|---|---|---|---|---|
\[2\] | \[2\] | \[1\] | \[2\] | \[3\] | \[0\] |
\[- 1\] | \[2\] | \[- 1\] | \[3\] | \[0\] | \[-\] |
\[4)\ \frac{2x^{4} - 3x^{3} - 7x^{2} - 5x - 3}{2x^{3} - 5x^{2} - 2x - 3} =\]
\[= \frac{(x - 3)(x + 1)\left( 2x^{2} + x + 1 \right)}{(x - 3)\left( 2x^{2} + x + 1 \right)} =\]
\[= x + 1.\]
\[Числитель\ дроби:\]
\[2\] | \[- 3\] | \[- 7\] | \[- 5\] | \[- 3\] | |
---|---|---|---|---|---|
\[3\] | \[2\] | \[3\] | \[2\] | \[1\] | \[0\] |
\[- 1\] | \[2\] | \[1\] | \[1\] | \[0\] | \[-\] |
\[Знаменатель\ дроби:\]
\[2\] | \[- 5\] | \[- 2\] | \[- 3\] | |
---|---|---|---|---|
\[3\] | \[2\] | \[1\] | \[1\] | \[0\] |