\[1)\ 4x^{4} + 4x^{3} - 25x^{2} - x + 6 =\]
\[= (x - 2)(x + 3)\left( 4x^{2} - 1 \right) =\]
\[= (x - 2)(2x - 1)(2x + 1)(x + 3).\]
\[4\] | \[4\] | \[- 25\] | \[- 1\] | \[6\] | |
---|---|---|---|---|---|
\[2\] | \[4\] | \[12\] | \[- 1\] | \[- 3\] | \[0\] |
\[- 3\] | \[4\] | \[0\] | \[- 1\] | \[0\] | \[-\] |
\[2)\ x^{4} - 2x^{3} - 14x^{2} - 6x + 5 =\]
\[= (x - 5)(x + 1)\left( x^{2} + 2x - 1 \right) =\]
\[= (x - 5)(x + 1)\left( x + 1 + \sqrt{2} \right)\left( x + 1 - \sqrt{2} \right).\]
\[1\] | \[- 2\] | \[- 14\] | \[- 6\] | \[5\] | |
---|---|---|---|---|---|
\[5\] | \[1\] | \[3\] | \[1\] | \[- 1\] | \[0\] |
\[- 1\] | \[1\] | \[2\] | \[- 1\] | \[0\] | \[-\] |
\[x^{2} + 2x - 1 = 0\]
\[D = 4 + 4 = 8\]
\[x = \frac{- 2 \pm \sqrt{8}}{2} = \frac{- 2 \pm 2\sqrt{2}}{2} =\]
\[= - 1 \pm \sqrt{2}.\]