\[1)\sin^{2}x > \frac{1}{4}\]
\[\frac{1 - \cos{2x}}{2} > \frac{1}{4}\]
\[2 - 2\cos{2x} > 1\]
\[2\cos{2x} < 1\]
\[\cos{2x} < \frac{1}{2}\]
\[\frac{\pi}{3} + 2\pi n < 2x < \frac{5\pi}{3} + 2\pi\text{n.}\]
\[Ответ:\ \ \frac{\pi}{6} + \pi n < x < \frac{5\pi}{6} + \pi\text{n.}\]
\[2)\ 3\sin x - 2\cos^{2}x < 0\]
\[3\sin x - 2\left( 1 - \sin^{2}x \right) < 0\]
\[2\sin^{2}x + 3\sin x - 2 < 0\]
\[D = 9 + 16 = 25\]
\[\sin x_{1} = \frac{- 3 - 5}{2 \bullet 2} = - 2;\ \]
\[\sin x_{2} = \frac{- 3 + 5}{2 \bullet 2} = \frac{1}{2}.\]
\[\left( \sin x + 2 \right)\left( \sin x - \frac{1}{2} \right) < 0\]
\[- 2 < \sin x < \frac{1}{2}.\]
\[Ответ:\ \]
\[- \frac{7\pi}{6} + 2\pi n < x < \frac{\pi}{6} + 2\pi n;\]