\[\left| z_{1} \right| = \left| z_{2} \right| = c:\]
\[\left| z_{1} + z_{2} \right|^{2} + \left| z_{1} - z_{2} \right|^{2} = 4c^{2}\]
\[2a_{1}^{2} + 2a_{2}^{2} + 2b_{1}^{2} + 2b_{2}^{2} = 4c^{2}\]
\[2\left( \sqrt{a_{1}^{2} + b_{1}^{2}} \right)^{2} + 2\left( \sqrt{a_{2}^{2} + b_{2}^{2}} \right)^{2} = 4c^{2}\]
\[2\left| z_{1} \right|^{2} + 2\left| z_{2} \right|^{2} = 4c^{2}\]
\[2c^{2} + 2c^{2} = 4c^{2}.\]
\[Что\ и\ требовалось\ доказать.\]