\[3\ случайные\ лампы\ исправны:\]
\[n = C_{100}^{3};\ \ \ m = C_{95}^{3};\]
\[P(A) = \frac{m}{n} = \frac{C_{95}^{3}}{C_{100}^{3}} =\]
\[= \frac{95!}{3!(95 - 3)!}\ :\frac{100!}{3!(100 - 3)!} =\]
\[= \frac{95 \bullet 94 \bullet 93 \bullet 92!}{3 \bullet 2 \bullet 92!} \bullet \frac{3 \bullet 2 \bullet 97!}{100 \bullet 99 \bullet 98 \bullet 97!} =\]
\[= \frac{138\ 415}{161\ 700} = \frac{27\ 683}{32\ 340} \approx 0,86.\]
\[Ответ:\ \ \frac{C_{95}^{3}}{C_{100}^{3}} \approx 0,86.\]