Решебник по алгебре и начала математического анализа 11 класс Колягин Задание 496

Авторы:
Год:2020-2021-2022-2023
Тип:учебник

Задание 496

\[R_{1},\ R_{2},\ R_{3}.\]

\[1)\ C = C_{3}^{0} + C_{3}^{2} + C_{3}^{3} =\]

\[= 1 + \frac{3!}{2!(3 - 2)!} + 1 = 2 + \frac{3 \bullet 2}{2 \bullet 1} =\]

\[= 5\ (сопротивлений) - всего.\]

\[2)\ Возможные\ сопротивления:\]

\[R_{1 + 2 + 3} = R_{1} + R_{2} + R_{3};\]

\[R_{1\text{/}2\text{/}3} = 1\ :\left( \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} \right) =\]

\[= \frac{R_{1}R_{2}R_{3}}{R_{1}R_{2} + R_{2}R_{3} + R_{1}R_{3}};\]

\[R_{2\text{/}3 + 1} = 1\ :\left( \frac{1}{R_{2}} + \frac{1}{R_{3}} \right) + R_{1} =\]

\[= R_{1} + \frac{R_{2}R_{3}}{R_{2} + R_{3}};\]

\[R_{1\text{/}3 + 2} = 1\ :\left( \frac{1}{R_{1}} + \frac{1}{R_{3}} \right) + R_{2} =\]

\[= R_{2} + \frac{R_{1}R_{3}}{R_{1} + R_{3}};\]

\[R_{1\text{/}2 + 3} = 1\ :\left( \frac{1}{R_{1}} + \frac{1}{R_{2}} \right) + R_{3} =\]

\[= R_{3} + \frac{R_{1}R_{2}}{R_{1} + R_{2}}.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам