\[C(n) = C_{n}^{2} - n = \frac{n!}{2!(n - 2)!} - n =\]
\[= \frac{n(n - 1)(n - 2)!}{2(n - 2)!} - n =\]
\[C(n) = \frac{n(n - 1)}{2} - n =\]
\[= \frac{n(n - 1) - 2n}{2} = \frac{n(n - 3)}{2} -\]
\[диагоналей\ в\ выпуклом\ \]
\[n - угольнике.\]
\[1)\ n = 5:\]
\[C(5) = \frac{5(5 - 3)}{2} = \frac{5 \bullet 2}{2} = 5.\]
\[2)\ n = 7:\]
\[C(7) = \frac{7(7 - 3)}{2} = \frac{7 \bullet 4}{2} =\]
\[= 7 \bullet 2 = 14.\]