\[\left( \sqrt{x} + \frac{1}{\sqrt[3]{x}} \right)^{16}.\]
\[1)\ a = C_{n}^{k} \bullet \left( \sqrt{x} \right)^{n - k} \bullet \left( \frac{1}{\sqrt[3]{x}} \right)^{k} =\]
\[= C_{16}^{k} \bullet \left( \sqrt{x} \right)^{16 - k} \bullet \left( \sqrt[3]{x} \right)^{- k} =\]
\[= C_{16}^{k} \bullet x^{\frac{1}{2}(16 - k)} \bullet x^{\frac{1}{3}( - k)} =\]
\[= C_{16}^{k} \bullet x^{8 - \frac{k}{2}} \bullet x^{- \frac{k}{3}} = C_{16}^{k} \bullet x^{8 - \frac{5k}{6}}.\]
\[2)\ 8 - \frac{5k}{6} = 3\]
\[\frac{5k}{6} = 5\]
\[k = 6.\]
\[3)\ C_{16}^{6} = \frac{16!}{6!(10 - 6)!} =\]
\[= \frac{16 \bullet 15 \bullet 14 \bullet 13 \bullet 12 \bullet 10!}{6 \bullet 5 \bullet 4 \bullet 3 \bullet 2 \bullet 10!} =\]
\[= 8008.\]
\[Ответ:\ \ C_{16}^{6} \bullet x^{3} = 8008x^{3}.\]