\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^{10}.\]
\[1)\ a = C_{n}^{k} \bullet \left( \sqrt{x} \right)^{n - k} \bullet \left( \frac{1}{\sqrt{x}} \right)^{k} =\]
\[= C_{10}^{k} \bullet \left( \sqrt{x} \right)^{10 - k} \bullet \left( \sqrt{x} \right)^{- k} =\]
\[= C_{10}^{k} \bullet \left( \sqrt{x} \right)^{10 - 2k} =\]
\[= C_{10}^{k} \bullet x^{\frac{1}{2}(10 - 2k)} = C_{10}^{k} \bullet x^{5 - k}.\]
\[2)\ 5 - k = 2\]
\[k = 3.\]
\[3)\ C_{10}^{3} = \frac{10!}{3!(10 - 3)!} =\]
\[= \frac{10 \bullet 9 \bullet 8 \bullet 7!}{3 \bullet 2 \bullet 7!} = 5 \bullet 3 \bullet 8 = 120.\]
\[Ответ:\ \ C_{10}^{3} \bullet x^{2} = 120x^{2}.\]