\[1)\ C_{x}^{2} + C_{x}^{3} = 15(x - 1)\]
\[C_{x + 1}^{3} = 15(x - 1)\]
\[\frac{(x + 1)!}{3!(x - 2)!} = 15(x - 1)\]
\[\frac{(x + 1)x(x - 1)(x - 2)!}{3 \bullet 2 \bullet (x - 2)!} = 15(x - 1)\]
\[(x + 1)x = 15 \bullet 6\]
\[x^{2} + x - 90 = 0\]
\[D = 1 + 360 = 361\]
\[x_{1} = \frac{- 1 - 19}{2} = - 10;\text{\ \ }\]
\[x_{2} = \frac{- 1 + 19}{2} = 9.\]
\[Ответ:\ \ 9.\]
\[2)\ C_{x - 1}^{3} + C_{x - 1}^{2} = 15(x - 2)\]
\[C_{x}^{3} = 15(x - 2)\]
\[\frac{x!}{3!(x - 3)!} = 15(x - 2)\]
\[\frac{x(x - 1)(x - 2)(x - 3)!}{3 \bullet 2 \bullet (x - 3)!} = 15(x - 2)\]
\[x(x - 1) = 15 \bullet 6\]
\[x^{2} - x - 90 = 0\]
\[D = 1 + 360 = 361\]
\[x_{1} = \frac{1 - 19}{2} = - 9;\text{\ \ }\]
\[x_{2} = \frac{1 + 19}{2} = 10.\]
\[Ответ:\ \ 10.\]