\[1)\ S_{n} = \frac{2a_{1} + (n - 1)d}{2} \bullet n\]
\[n = 1:\]
\[S_{n} = \frac{2a_{1} + (1 - 1)d}{2} \bullet 1 = a_{1}.\]
\[n = k + 1:\]
\[S_{k + 1} =\]
\[= \frac{2a_{1} + (k + 1 - 1)d}{2} \bullet (k + 1) =\]
\[= \frac{\left( 2a_{1} + kd \right)(k + 1)}{2} =\]
\[= \frac{2a_{1}k + 2a_{1} + k^{2}d + kd}{2} =\]
\[= \frac{2a_{1}k + k^{2}d - kd}{2} + \frac{2a_{1} + 2kd}{2} =\]
\[= \frac{2a_{1} + (k - 1)d}{2} \bullet k + \left( a_{1} + kd \right) =\]
\[= S_{k} + a_{k + 1}.\]
\[Что\ и\ требовалось\ доказать.\]
\[2)\ S_{n} = \frac{b_{1} \bullet (q^{n} - 1)}{q - 1}\]
\[n = 1:\]
\[S_{1} = \frac{b_{1} \bullet \left( q^{1} - 1 \right)}{q - 1} = b_{1}.\]
\[n = k + 1:\]
\[S_{k + 1} = \frac{b_{1} \bullet \left( q^{k + 1} - 1 \right)}{q - 1} =\]
\[= \frac{b_{1} \bullet \left( q^{k} - 1 + q^{k + 1} - q^{k} \right)}{q - 1} =\]
\[= \frac{b_{1} \bullet \left( q^{k} - 1 + q^{k}(q - 1) \right)}{q - 1} =\]
\[= \frac{b_{1} \bullet \left( q^{k} - 1 \right) + bq^{k}(q - 1)}{q - 1} =\]
\[= \frac{b_{1} \bullet \left( q^{k} - 1 \right)}{q - 1} + bq^{k} =\]
\[= S_{k} + b_{k + 1}.\]
\[Что\ и\ требовалось\ доказать.\]