Решебник по алгебре и начала математического анализа 11 класс Колягин Задание 405

Авторы:
Год:2020-2021-2022-2023
Тип:учебник

Задание 405

\[1)\ 1 + 3 + 5 + \ldots + (2n - 1) = n^{2}\]

\[n = 1:\]

\[2 \bullet 1 - 1 = 1 = 1^{2}.\]

\[n = k + 1:\]

\[1 + 3 + 5 + \ldots + \left( 2(k + 1) - 1 \right) =\]

\[= (k + 1)^{2};\]

\[1 + 3 + 5 + \ldots + (2k - 1) + (2k + 1) =\]

\[= k^{2} + 2k + 1;\]

\[k^{2} + (2k + 1) = k^{2} + (2k + 1).\]

\[Что\ и\ требовалось\ доказать.\]

\[2)\ 3 + 5 + 7 + \ldots + (2n + 1) = n(n + 2)\]

\[n = 1:\]

\[2 \bullet 1 + 1 = 3 = 1(1 + 2).\]

\[n = k + 1:\]

\[3 + 5 + 7 + \ldots + \left( 2(k + 1) + 1 \right) =\]

\[= (k + 1)(k + 3);\]

\[3 + 5 + 7 + \ldots + (2k + 1) + (2k + 3) =\]

\[= k^{2} + 4k + 3;\]

\[k(k + 2) + (2k + 3) =\]

\[= k(k + 2) + (2k + 3).\]

\[Что\ и\ требовалось\ доказать.\]

\[3)\ 1 + 2 + 4 + \ldots + 2^{n - 1} = 2^{n} - 1\]

\[n = 1:\]

\[2^{1 - 1} = 1 = 2^{1} - 1.\]

\[n = k + 1:\]

\[1 + 2 + 4 + \ldots + 2^{k} = 2^{k + 1} - 1;\]

\[1 + 2 + 4 + \ldots + 2^{k - 1} =\]

\[= 2 \bullet 2^{k} - 2^{k} - 1;\]

\[2^{k} - 1 = 2^{k} - 1.\]

\[Что\ и\ требовалось\ доказать.\]

\[4)\ 3 + 9 + 27 + \ldots + 3^{n} = \frac{3}{2}\left( 3^{n} - 1 \right)\]

\[n = 1:\]

\[3^{1} = 3 = \frac{3}{2}\left( 3^{1} - 1 \right).\]

\[n = k + 1:\]

\[3 + 9 + 27 + \ldots + 3^{k + 1} =\]

\[= \frac{3}{2}\left( 3^{k + 1} - 1 \right);\]

\[3 + 9 + 27 + \ldots + 3^{k} + 3^{k + 1} =\]

\[= \frac{3}{2}\left( 3^{k + 1} - 1 \right);\]

\[\frac{3}{2}\left( 3^{k} - 1 \right) + 3^{k + 1} = \frac{3}{2}\left( 3^{k + 1} - 1 \right);\]

\[3\left( 3^{k} - 1 \right) + 2 \bullet 3 \bullet 3^{k} =\]

\[= 3\left( 3 \bullet 3^{k} - 1 \right);\]

\[3 \bullet 3^{k} - 3 + 6 \bullet 3^{k} = 9 \bullet 3^{k} - 3;\]

\[9 \bullet 3^{k} - 3 = 9 \bullet 3^{k} - 3.\]

\[Что\ и\ требовалось\ доказать.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам