\[r - радиус\ полукруга;\ \]
\[h - высота:\]
\[2h + 2r + \pi r = p\]
\[2h = p - 2r - \pi r.\]
\[1)\ S(r) = 2r \bullet h + \frac{1}{2}\pi r^{2} =\]
\[= r(p - 2r - \pi r) + 0,5\pi r^{2} =\]
\[= pr - 2r^{2} - \pi r^{2} + 0,5\pi r^{2} =\]
\[= pr - 2r^{2} - 0,5\pi r^{2};\]
\[S^{'}(r) = p - 2 \bullet 2r - 0,5\pi \bullet 2r =\]
\[= p - 4r - \pi r.\]
\[2)\ p - 4r - \pi r \geq 0\]
\[4r + \pi r \leq p\]
\[r(4 + \pi) \leq p\]
\[r \leq \frac{p}{\pi + 4}.\]
\[3)\ Точка\ максимума:\]
\[r = \frac{p}{\pi + 4}.\]
\[Ответ:\ \ \frac{p}{\pi + 4}.\]