\[a,b,c - стороны\ треугольника:\]
\[a + c = l\]
\[c = l - a.\]
\[1)\ b = \sqrt{c^{2} - a^{2}} =\]
\[= \sqrt{(l - a)^{2} - a^{2}} =\]
\[= \sqrt{l^{2} - 2al + a^{2} - a^{2}} =\]
\[= \sqrt{l^{2} - 2al}.\]
\[2)\ S(a) = \frac{1}{2}ab = \frac{1}{2}a\sqrt{l^{2} - 2al} =\]
\[= \frac{\sqrt{a^{2}l^{2} - 2a^{3}l}}{2};\]
\[S^{'}(a) = \frac{1}{2} \bullet \frac{2al^{2} - 2 \bullet 3a^{2}l}{2\sqrt{a^{2}l^{2} - 2a^{3}l}} =\]
\[= \frac{al^{2} - 3a^{2}l}{2\sqrt{a^{2}l^{2} - 2a^{3}l}}.\]
\[3)\ al^{2} - 3a^{2}l \geq 0\]
\[l - 3a \geq 0\]
\[3a \leq l\]
\[a \leq \frac{l}{3}.\]
\[4)\ Точка\ максимума:\]
\[a = \frac{l}{3};\text{\ \ \ }\]
\[c = l - \frac{l}{3} = \frac{2l}{3};\]
\[b = \sqrt{\frac{4l^{2}}{9} - \frac{l^{2}}{9}} = \sqrt{\frac{l^{2}}{3}} = \frac{l}{\sqrt{3}}.\]
\[Ответ:\ \ катеты\ \frac{l}{3}\ и\ \frac{l}{\sqrt{3}};\ \]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }гипотенуза\ \frac{2l}{3}.\]