Решебник по алгебре и начала математического анализа 11 класс Колягин Задание 322

Авторы:
Год:2020-2021-2022-2023
Тип:учебник

Задание 322

\[1)\ y = x^{5} - 2,5x^{2} + 3;\]

\[y^{'} = 5x^{4} - 2,5 \bullet 2x + 0 =\]

\[= 5x^{4} - 5x.\]

\[Промежуток\ возрастания:\]

\[5x^{4} - 5x \geq 0\]

\[5x\left( x^{3} - 1 \right) \geq 0\]

\[x(x - 1) \geq 0\]

\[x \leq 0;\text{\ \ \ x} \geq 1.\]

\[y(0) = 0 - 2,5 \bullet 0 + 3 = 3;\]

\[y(1) = 1 - 2,5 \bullet 1 + 3 = 1,5.\]

\[Ответ:\ \ \]

\[x = 1 - точка\ минимума;\]

\[\text{\ y}(1) = 1,5;\]

\[x = 0 - точка\ максимума;\ \]

\[y(0) = 3.\]

\[2)\ y = 0,2x^{5} - 4x^{2} - 3;\]

\[y^{'} = 0,2 \bullet 5x^{4} - 4 \bullet 2x - 0 =\]

\[= x^{4} - 8x;\]

\[Промежуток\ возрастания:\]

\[x^{4} - 8x \geq 0\]

\[x\left( x^{3} - 8 \right) \geq 0\]

\[x(x - 2) \geq 0\]

\[x \leq 0;\text{\ \ \ x} \geq 2.\]

\[y(0) = 0,2 \bullet 0 - 4 \bullet 0 - 3 = - 3;\]

\[y(2) = 0,2 \bullet 32 - 4 \bullet 4 - 3 = - 12,6.\]

\[Ответ:\ \ \]

\[x = 2 - точка\ минимума;\]

\[\text{\ y}(2) = - 12,6;\]

\[x = 0 - точка\ максимума;\]

\[y(0) = - 3.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам