\[1)\ y = 2x^{3} + 3x^{2} - 2;\]
\[y^{'} = 2 \bullet 3x^{2} + 3 \bullet 2x - 0 =\]
\[= 6x^{2} + 6x.\]
\[6x^{2} + 6x \geq 0\]
\[6x(x + 1) \geq 0\]
\[x \leq - 1;\text{\ \ \ x} \geq 0.\]
\[Возрастает\ на\ ( - \infty;\ - 1\rbrack \cup \lbrack 0;\ + \infty);\]
\[убывает\ на\ \lbrack - 1;\ 0\rbrack.\]
\[2)\ y = \frac{2}{3}x^{3} - x^{2} - 4x + 5;\]
\[y^{'} = \frac{2}{3} \bullet 3x^{2} - 2x - 4 + 0 =\]
\[= 2x^{2} - 2x - 4.\]
\[2x^{2} - 2x - 4 \geq 0\]
\[x^{2} - x - 2 \geq 0\]
\[D = 1 + 8 = 9\]
\[x_{1} = \frac{1 - 3}{2} = - 1;\text{\ \ }\]
\[x_{2} = \frac{1 + 3}{2} = 2;\]
\[(x + 1)(x - 2) \geq 0\]
\[x \leq - 1;\ \ \ x \geq 2.\]
\[Возрастает\ на\ ( - \infty;\ - 1\rbrack \cup \lbrack 2;\ + \infty);\]
\[убывает\ на\ \lbrack - 1;\ 2\rbrack.\]
\[3)\ y = \frac{3}{x} - 1;\]
\[y^{'} = 3 \bullet \left( - \frac{1}{x^{2}} \right) - 0 = - \frac{3}{x^{2}} < 0.\]
\[Область\ определения:\]
\[x \neq 0.\]
\[Убывает\ на\ ( - \infty;\ 0) \cup (0;\ + \infty).\]
\[4)\ y = \frac{2}{x - 3};\]
\[y^{'} = 2 \bullet \left( - \frac{1}{(x - 3)^{2}} \right) =\]
\[= - \frac{2}{(x - 3)^{2}} < 0.\]
\[Область\ определения:\]
\[x - 3 \neq 0\]
\[x \neq 3.\]
\[Убывает\ на\ ( - \infty;\ 3) \cup (3;\ + \infty).\]