\[y = a(x - b)^{2};\ \ a < 0.\]
\[1)\ Касается\ y = \frac{x}{2} - 3:\]
\[y^{'}(x) = a \bullet 2(x - b) = 2ax - 2ab;\]
\[2ax - 2ab = \frac{1}{2}\]
\[x - b = \frac{1}{4a}\]
\[b = x - \frac{1}{4a}.\]
\[2)\ Точка\ касания:\]
\[a(x - b)^{2} = \frac{x}{2} - 3\]
\[a\left( x - x + \frac{1}{4a} \right)^{2} = \frac{x}{2} - 3\]
\[a \bullet \frac{1}{16a^{2}} = \frac{x}{2} - 3\]
\[\frac{1}{16a} = \frac{x}{2} - 3\]
\[\frac{x}{2} = 3 + \frac{1}{16a}\]
\[x = 6 + \frac{1}{8a};\]
\[b = 6 + \frac{1}{8a} - \frac{1}{4a} = 6 - \frac{1}{8a}.\]
\[3)\ x = b = 6 - \frac{1}{8a}.\]
\[4)\ y = - a(0 - b)^{2} = - ab^{2} =\]
\[= - a \bullet \left( 6 - \frac{1}{8a} \right)^{2} =\]
\[= - a\left( 36 - \frac{3}{2a} + \frac{1}{64a^{2}} \right) =\]
\[= \frac{3}{2} - 36a - \frac{1}{64a}.\]
\[5)\ Сумма\ искомых\ отрезков:\]
\[S(a) = x + y =\]
\[= 6 - \frac{1}{8a} + \frac{3}{2} - 36a - \frac{1}{64a} =\]
\[= \frac{15}{2} - 36a - \frac{9}{64a};\]
\[S^{'}(a) = 0 - 36 - \frac{9}{64} \bullet \left( - \frac{1}{a^{2}} \right) =\]
\[= \frac{9\left( 1 - 256a^{2} \right)}{64a^{2}}.\]
\[6)\ 1 - 256a^{2} \geq 0\]
\[256a^{2} - 1 \leq 0\]
\[(16a + 1)(16a - 1) \leq 0\]
\[- \frac{1}{16} \leq a \leq \frac{1}{16}.\]
\[7)\ Точка\ минимума:\]
\[a = - \frac{1}{16};\]
\[b = 6 + 2 = 8.\]
\[Ответ:\ \ y = - \frac{1}{16}(x - 8)^{2}.\]