\[y = kx + b - прямая:\]
\[2 = k \bullet 1 + b\]
\[b = 2 - k.\]
\[1)\ Преобразуем:\]
\[y = kx + (2 - k) = k(x - 1) + 2.\]
\[2)\ k(x - 1) + 2 = 0\]
\[k(x - 1) = - 2\]
\[x - 1 = - \frac{2}{k}\]
\[x = 1 - \frac{2}{k}.\]
\[3)\ y = k(0 - 1) + 2 = 2 - k.\]
\[4)\ S(k) =\]
\[= \frac{1}{2}xy = \frac{1}{2}\left( 1 - \frac{2}{k} \right)(2 - k) =\]
\[= \frac{1}{2}\left( 2 - k - \frac{4}{k} + 2 \right) =\]
\[= \frac{1}{2}\left( 4 - k - \frac{4}{k} \right) =\]
\[= \frac{1}{2}\left( 0 - 1 - 4 \bullet \left( - \frac{1}{k^{2}} \right) \right) =\]
\[= \frac{4 - k^{2}}{2k^{2}}.\]
\[5)\ Промежуток\ возрастания:\]
\[4 - k^{2} \geq 0\]
\[k^{2} - 4 \leq 0;\]
\[(k + 2)(k - 2) \leq 0\]
\[- 2 \leq k \leq 2.\]
\[6)\ Точка\ минимума:\]
\[k = - 2.\]
\[Ответ:\ - 2.\]
\[\mathbf{ }\]
\[\ y = (x - 1)^{2};\ \ 0 \leq x \leq 2.\]
\[1)\ \ (1 + k) - точка\ основания:\]
\[b = 1 - k - тоже\ точка\ \]
\[основания;\]
\[y_{1} = (1 + k - 1)^{2} = k^{2};\]
\[y_{2} = (1 - k - 1)^{2} = k^{2}.\]
\[2)\ Высота\ и\ основания\ \]
\[трапеции:\]
\[x_{0} = 1;\ \ \ y_{0} = 0;\]
\[0 \leq y \leq 1;\text{\ \ \ }\]
\[k^{2} \leq 1;\]
\[h = 1 - k^{2};\]
\[a = (k + 1) - (1 - k) = 2k;\]
\[b = 5 - 3 = 2.\]
\[3)\ S(k) = \frac{1}{2}h(a + b) =\]
\[= \frac{1}{2}\left( 1 - k^{2} \right)(2 + 2k) =\]
\[= \left( 1 - k^{2} \right)(1 + k) =\]
\[= 1 + k - k^{2} - k^{3};\]
\[S^{'}(k) = 0 + 1 - 2k - 3k^{2} =\]
\[= 1 - 2k - 3k^{2}.\]
\[4)\ 1 - 2k - 3k^{2} \geq 0\]
\[3k^{2} + 2k - 1 \leq 0\]
\[D = 4 + 12 = 16\]
\[k_{1} = \frac{- 2 - 4}{2 \bullet 3} = - 1;\text{\ \ }\]
\[k_{2} = \frac{- 2 + 4}{2 \bullet 3} = \frac{1}{3};\]
\[(k + 1)\left( k - \frac{1}{3} \right) \leq 0\]
\[- 1 \leq k \leq \frac{1}{3}.\]
\[5)\ Точка\ максимума:\]
\[k = \frac{1}{3};\text{\ \ \ }\]
\[S = 1 + \frac{1}{3} - \frac{1}{9} - \frac{1}{27} = \frac{32}{27}.\]
\[Ответ:\ \ \frac{32}{27}.\]