\[1)\ f(x) = x - 2\ln x\ на\left\lbrack \frac{3}{2};\ e \right\rbrack:\]
\[f^{'}(x) = 1 - 2 \bullet \frac{1}{x} = \frac{x - 2}{x}.\]
\[Стационарные\ точки:\]
\[x - 2 = 0\]
\[x = 2.\]
\[f\left( \frac{3}{2} \right) = \frac{3}{2} - 2\ln\frac{3}{2} = 1,5 - 2\ln{1,5};\]
\[f(2) = 2 - 2\ln 2;\]
\[f(e) = e - 2\ln e = e - 2.\]
\[Ответ:\ \ 2 - 2\ln 2;\ e - 2.\]
\[2)\ f(x) = x + e^{- x}\ на\ \lbrack - 1;\ 2\rbrack:\]
\[f^{'}(x) = 1 - e^{- x}.\]
\[Стационарные\ точки:\]
\[1 - e^{- x} = 0\]
\[e^{- x} = 1\]
\[- x = 0\]
\[x = 0.\]
\[f( - 1) = - 1 + e^{1} = e - 1;\]
\[f(0) = 0 + e^{- 0} = 1;\]
\[f(2) = 2 + e^{- 2}.\]
\[Ответ:\ \ 1;\ 2 + e^{- 2}.\]