\[y = \frac{x + 2}{x - 2};\ \ \ a = - \frac{\pi}{4}.\]
\[Угол\ между\ касательной\ и\ Ox:\]
\[y^{'}(x) = \frac{(x - 2) - (x + 2)}{(x - 2)^{2}} =\]
\[= \text{tg}\left( - \frac{\pi}{4} \right);\]
\[\frac{- 4}{(x - 2)^{2}} = - 1\]
\[(x - 2)^{2} = 4\]
\[x^{2} - 4x + 4 = 4\]
\[x^{2} - 4x = 0\]
\[x(x - 4) = 0\]
\[x_{1} = 0;\text{\ \ \ }\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }x_{2} = 4;\]
\[y_{1} = \frac{2}{- 2} = - 1;\text{\ \ \ }y_{2} = \frac{6}{2} = 3.\]
\[Ответ:\ \ (0;\ - 1);\ (4;\ 3).\]