\[y = kx.\]
\[1)\ y = x^{2} - 3x + 4,\ \ \ k = 1:\]
\[y^{'}(x) = 2x - 3 = 1\]
\[2x = 4\]
\[x = 2;\]
\[y = 1 - 3 + 4 = 2.\]
\[Ответ:\ \ (2;\ 2).\]
\[2)\ f(x) = x(x + 1),\ \ \ k = 3:\]
\[y^{'}(x) = (x + 1) + x = 3\]
\[2x = 2\]
\[x = 1;\]
\[y = 1 \bullet 2 = 2.\]
\[Ответ:\ \ (1;\ 2).\]
\[3)\ f(x) = \frac{1}{3}x^{3} + x^{2} - 2x;k = 1:\]
\[f^{'}(x) = \frac{1}{3} \bullet 3x^{2} + 2x - 2 = 1;\]
\[x^{2} + 2x - 3 = 0\]
\[D = 4 + 12 = 16\]
\[x_{1} = \frac{- 2 - 4}{2} = - 3;\text{\ \ }\]
\[x_{2} = \frac{- 2 + 4}{2} = 1;\]
\[y_{1} = - 9 + 9 + 6 = 6;\ \]
\[y_{2} = \frac{1}{3} + 1 - 2 = - \frac{2}{3}.\]
\[Ответ:\ \ ( - 3;\ 6);\ \left( 1;\ - \frac{2}{3} \right).\]
\[4)\ f(x) = e^{x} + e^{- x},\ \ \ k = \frac{3}{2}:\]
\[f^{'}(x) = e^{x} - e^{- x} = \frac{3}{2};\]
\[2e^{x} - 2e^{- x} = 3\]
\[2e^{2x} - 3e^{x} - 2 = 0\]
\[D = 9 + 16 = 25\]
\[e_{1}^{x} = \frac{3 - 5}{2 \bullet 2} = - \frac{1}{2};\]
\[e_{2}^{x} = \frac{3 + 5}{2 \bullet 2} = 2;\]
\[x_{1} \in \varnothing\ \ и\ \ x_{2} = \ln 2.\]
\[y = e^{\ln 2} + e^{- \ln 2} = 2 + \frac{1}{2} = \frac{5}{2}.\]
\[Ответ:\ \ \left( \ln 2;\ \frac{5}{2} \right).\]
\[5)\ f(x) = \sqrt{3x + 1},\ \ \ k = \frac{3}{4}:\]
\[f^{'}(x) = \frac{3}{2\sqrt{3x + 1}} = \frac{3}{4};\]
\[\sqrt{3x + 1} = 2\]
\[3x + 1 = 4\]
\[3x = 3\]
\[x = 1;\]
\[y = \sqrt{4} = 2.\]
\[Ответ:\ \ (1;\ 2).\]
\[6)\ f(x) = x + \sin x,\ \ \ k = 0:\]
\[f^{'}(x) = 1 + \cos x = 0;\]
\[\cos x = - 1\]
\[x = \pi + 2\pi n;\]
\[y = \pi + 2\pi n.\]
\[Ответ:\ \ (\pi + 2\pi n;\ \pi + 2\pi n).\]