\[f(x) = \ln\left( x^{2} + 5x + 6 \right);\]
\[f^{'}(x) = \frac{2x + 5}{x^{2} + 5x + 6}.\]
\[x^{2} + 5x + 6 > 0;\]
\[D = 25 - 24 = 1\]
\[x_{1} = \frac{- 5 - 1}{2} = - 3;\text{\ \ }\]
\[x_{2} = \frac{- 5 + 1}{2} = - 2;\]
\[(x + 3)(x + 2) > 0\]
\[x < - 3;\text{\ \ \ x} > - 2.\]
\[x^{2} + 5x + 6 = (x + 3)(x + 2).\]
\[Ответ:\ \ \frac{2x + 5}{(x + 3)(x + 2)}.\]