\[1)\ f(x) =\]
\[= 5\left( \sin x - \cos x \right) + \sqrt{2}\cos{5x};\]
\[f^{'}(x) =\]
\[= 5\left( \cos x + \sin x \right) - 5\sqrt{2}\sin{5x} = 0;\]
\[5\sqrt{2}\left( \frac{\sqrt{2}}{2}\cos x + \frac{\sqrt{2}}{2}\sin x \right) - 5\sqrt{2}\sin{5x} = 0\]
\[5\sqrt{2}\left( \sin\left( x + \frac{\pi}{4} \right) - \sin{5x} \right) = 0\]
\[2\sin\left( \frac{\pi}{8} - 2x \right) \bullet \cos\left( 3x + \frac{\pi}{8} \right) = 0\]
\[\sin\left( 2x - \frac{\pi}{8} \right) = 0\]
\[2x - \frac{\pi}{8} = \pi n\]
\[2x = \frac{\pi}{8} + \pi n\]
\[x = \frac{\pi}{16} + \frac{\pi n}{2}.\]
\[\cos\left( 3x + \frac{\pi}{8} \right) = 0\]
\[3x + \frac{\pi}{8} = \frac{\pi}{2} + \pi n\]
\[3x = \frac{3\pi}{8} + \pi n\]
\[x = \frac{\pi}{8} + \frac{\pi n}{3}.\]
\[Ответ:\ \ \frac{\pi}{16} + \frac{\pi n}{2};\ \frac{\pi}{8} + \frac{\pi n}{3}.\]
\[2)\ f(x) =\]
\[= 1 - \cos{2x} + \sin x - \cos x - x;\]
\[f^{'}(x) =\]
\[= 2\sin{2x} + \cos x + \sin x - 1 = 0;\]
\[\cos x + \sin x = 1 - 4\sin x\cos x\]
\[y = \cos x + \sin x:\]
\[y^{2} = 1 + 2\sin x\cos x\]
\[2\sin x\cos x = y^{2} - 1\]
\[y = 1 - 2\left( y^{2} - 1 \right)\]
\[2y^{2} + y - 3 = 0\]
\[D = 1 + 24 = 25\]
\[y_{1} = \frac{- 1 - 5}{2 \bullet 2} = - \frac{3}{2};\text{\ \ }\]
\[y_{2} = \frac{- 1 + 5}{2 \bullet 2} = 1.\]
\[1)\ \sin x + \cos x = - \frac{3}{2}\]
\[\sqrt{2}\left( \frac{\sqrt{2}}{2}\sin x + \frac{\sqrt{2}}{2}\cos x \right) = - \frac{3}{2}\]
\[\sin\left( x + \frac{\pi}{4} \right) = - \frac{3}{2\sqrt{2}}\]
\[x \in \varnothing.\]
\[2)\ \sin x + \cos x = - \frac{3}{2}\]
\[\sqrt{2}\left( \frac{\sqrt{2}}{2}\sin x + \frac{\sqrt{2}}{2}\cos x \right) = 1\]
\[\sin\left( x + \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2}\]
\[x + \frac{\pi}{4} = \frac{\pi}{4} + 2\pi n\]
\[x = 2\pi n.\]
\[x + \frac{\pi}{4} = \frac{3\pi}{4} + 2\pi n\]
\[x = \frac{\pi}{2} + 2\pi n.\]
\[Ответ:\ \ 2\pi n;\ \frac{\pi}{2} + 2\pi\text{n.}\]