\[f^{'}(x) > 0.\]
\[1)\ f(x) = e^{x} - x;\]
\[f^{'}(x) = e^{x} - 1 > 0;\]
\[e^{x} > 1\]
\[x > 0.\]
\[Ответ:\ \ (0;\ + \infty).\]
\[2)\ f(x) = 6x + \cos{3x};\]
\[f^{'}(x) = 6 - 3\sin{3x} > 0;\]
\[3\sin{3x} < 6\]
\[\sin{3x} < 2\]
\[x \in R.\]
\[Ответ:\ \ ( - \infty;\ + \infty).\]
\[3)\ f(x) = \ln x - x;\]
\[f^{'}(x) = \frac{1}{x} - 1 > 0;\]
\[\frac{1 - x}{x} > 0\]
\[\frac{x - 1}{x} < 0\]
\[0 < x < 1.\]
\[Ответ:\ \ (0;\ 1).\]
\[4)\ f(x) = x - 2\ln x;\]
\[f^{'}(x) = 1 - \frac{2}{x} > 0;\]
\[\frac{x - 2}{x} > 0\]
\[x < 0;\text{\ \ \ x} > 2.\]
\[Ответ:\ \ (2;\ + \infty).\]
\[5)\ f(x) = 6x - x\sqrt{x};\]
\[f^{'}(x) = 6 - \frac{3}{2}x^{\frac{1}{2}} > 0;\]
\[12 - 3\sqrt{x} > 0\]
\[3\sqrt{x} < 12\]
\[\sqrt{x} < 4\]
\[0 \leq x < 16.\]
\[Ответ:\ \ \lbrack 0;\ 16).\]
\[6)\ f(x) = (x + 1)\sqrt{x + 1} - 3x;\]
\[f^{'}(x) = \sqrt{x + 1} + \frac{x + 1}{2\sqrt{x + 1}} - 3 > 0;\]
\[\sqrt{x + 1} + \frac{1}{2}\sqrt{x + 1} - 3 > 0\]
\[\frac{3}{2}\sqrt{x + 1} > 3\]
\[\sqrt{x + 1} > 2\]
\[x + 1 > 4\]
\[x > 3.\]
\[Ответ:\ \ (3;\ + \infty).\]