\[1)\ y = \sin\sqrt{|x|}\]
\[\sin\sqrt{|x|} = 0\]
\[\sqrt{|x|} = \pi n\]
\[|x| = \pi^{2}n^{2}\]
\[x = \pm \pi^{2}n^{2}.\]
\[Найдем\ разность:\]
\[\pi^{2} \bullet 3^{2} = 9\pi^{2}\]
\[\pi^{2} \bullet 2^{2} = 4\pi^{2}\]
\[\pi^{2} \bullet 1^{2} = \pi^{2}\]
\[T_{1} = 9\pi^{2} - 4\pi^{2} = 5\pi^{2};\]
\[T_{2} = 4\pi^{2} - \pi^{2} = 3\pi^{2}.\]
\[Что\ и\ требовалось\ доказать.\]
\[2)\ y = \sin x + \sin{\sqrt{2}x}\]
\[y(x + T) = y(x);\]
\[\sin(x + T) + \sin\left( \sqrt{2}x + \sqrt{2}T \right) =\]
\[= \sin x + \sin{\sqrt{2}x}\]
\[T_{1} = 2\pi;\ \ \ T_{2} = \frac{2\pi}{\sqrt{2}};\ \ \ \]
\[nT_{1} = kT_{2}.\]
\[2\pi n = \frac{2\pi k}{\sqrt{2}}\]
\[n = \frac{k}{\sqrt{2}} \notin Z.\]
\[Что\ и\ требовалось\ доказать.\]