\[1)\ f(x) = \frac{3x^{2} - 1}{1 - 2x};\]
\[ОДЗ:\]
\[1 - 2x \neq 0\]
\[- 2x \neq - 1\]
\[x \neq 0,5.\]
\[6x - 12x^{2} + 6x^{2} - 2 < 0\]
\[6x^{2} - 6x + 2 > 0\]
\[3x^{2} - 3x + 1 > 0\]
\[D = 9 - 12 = - 3 < 0;\]
\[a > 0 \rightarrow x \in R.\]
\[Ответ:\ \ ( - \infty;\ 0,5) \cup (0,5;\ + \infty).\]
\[2)\ f(x) = \frac{3x^{3}}{1 - 3x};\]
\[ОДЗ:\]
\[1 - 3x \neq 0\]
\[3x \neq 1\]
\[x \neq \frac{1}{3}.\]
\[9x^{2} - 27x^{3} + 9x^{3} < 0\]
\[18x^{3} - 9x^{2} > 0\]
\[9x^{2}(2x - 1) > 0\]
\[2x - 1 > 0\]
\[2x > 1\]
\[x > 0,5.\]
\[Ответ:\ \ (0,5;\ + \infty).\]