\[1)\ y = \frac{1 - \cos x}{1 + \cos x}\]
\[1 + \cos x \neq 0;\]
\[\cos x \neq - 1;\]
\[x \neq \pi + 2\pi\text{n.}\]
\[y( - x) = \frac{1 - \cos( - x)}{1 + \cos( - x)};\]
\[y( - x) = \frac{1 - \cos x}{1 + \cos x} = y(x).\]
\[Ответ:\ \ четная.\]
\[2)\ y = \frac{\sqrt{\sin^{2}x}}{1 + \cos{2x}}\]
\[1 + \cos{2x} \neq 0;\]
\[\cos{2x} \neq - 1;\]
\[2x \neq \pi + 2\pi n;\]
\[x \neq \frac{\pi}{2} + \pi\text{n.}\]
\[y( - x) = \frac{\sqrt{\sin^{2}( - x)}}{1 + \cos( - 2x)};\]
\[y( - x) = \frac{\sqrt{\sin^{2}x}}{1 + \cos{2x}} = y(x).\]
\[Ответ:\ \ четная.\]
\[3)\ y = \frac{\cos{2x} - x^{2}}{\sin x}\]
\[\sin x \neq 0;\]
\[x \neq \pi\text{n.}\]
\[y( - x) = \frac{\cos( - 2x) - ( - x)^{2}}{\sin( - x)};\]
\[y( - x) = \frac{\cos{2x} - x^{2}}{- \sin x} = - y(x).\]
\[Ответ:\ \ нечетная.\]
\[4)\ y = \frac{x^{3} + \sin{2x}}{\cos x}\]
\[\cos x \neq 0;\]
\[x \neq \frac{\pi}{2} + \pi\text{n.}\]
\[y( - x) = \frac{( - x)^{3} + \sin( - 2x)}{\cos( - x)};\]
\[y( - x) = \frac{- x^{3} - \sin{2x}}{\cos x} = - y(x).\]
\[Ответ:\ \ нечетная.\]
\[5)\ y = x\left| \sin x \right|\sin^{3}x\]
\[x \in R.\]
\[y( - x) = - x\left| \sin( - x) \right|\sin^{3}( - x);\]
\[y( - x) = x\left| \sin x \right|\sin^{3}x = y(x).\]
\[Ответ:\ \ четная.\]
\[6)\ y = 3^{\cos x}\]
\[x \in R.\]
\[y( - x) = 3^{\cos( - x)};\]
\[y( - x) = 3^{\cos x} = y(x).\]
\[Ответ:\ \ четная.\]
\[7)\ y = x^{2}\sin\frac{1}{x}\]
\[x \neq 0.\]
\[y( - x) = ( - x)^{2}\sin\left( - \frac{1}{x} \right);\]
\[y( - x) = - x^{2}\sin\frac{1}{x} = - y(x).\]
\[Ответ:\ \ нечетная.\]
\[8)\ y = \log_{3}\frac{1 + \sin x}{1 - \sin x}\]
\[\frac{1 + \sin x}{1 - \sin x} > 0;\]
\[\sin x \neq \pm 1;\]
\[x \neq \frac{\pi}{2} + \pi\text{n.}\]
\[y( - x) = \log_{3}\frac{1 + \sin( - x)}{1 - \sin( - x)} =\]
\[= \log_{3}\frac{1 - \sin x}{1 + \sin x};\]
\[y( - x) = - \log_{3}\frac{1 + \sin x}{1 - \sin x} = - y(x).\]
\[Ответ:\ \ нечетная.\]