\[1)\ y = \sin{2x},\ \ \ T = \pi:\]
\[y(x - T) = \sin{2(x - \pi)} =\]
\[= \sin(2x - 2\pi) = \sin{2x} = y(x);\]
\[y(x + T) = \sin{2(x + \pi)} =\]
\[= \sin(2x + 2\pi) = \sin{2x} = y(x).\]
\[Что\ и\ требовалось\ доказать.\]
\[2)\ y = \cos\frac{x}{2},\ \ \ T = 4\pi:\]
\[y(x - T) = \cos\frac{x - 4\pi}{2} =\]
\[= \cos\left( \frac{x}{2} - 2\pi \right) = \cos\frac{x}{2} = y(x);\]
\[y(x + T) = \cos\frac{x + 4\pi}{2} =\]
\[= \cos\left( \frac{x}{2} + 2\pi \right) = \cos\frac{x}{2} = y(x).\]
\[Что\ и\ требовалось\ доказать.\]
\[3)\ y = tg\ 2x,\ \ \ T = \frac{\pi}{2}:\]
\[y(x - T) = tg\ 2\left( x - \frac{\pi}{2} \right) =\]
\[= tg(2x - \pi) = tg\ 2x = y(x);\]
\[y(x + T) = tg\ 2\left( x + \frac{\pi}{2} \right) =\]
\[= tg(2x + \pi) = tg\ 2x = y(x).\]
\[Что\ и\ требовалось\ доказать.\]
\[4)\ y = \sin\frac{4x}{5},\ \ \ T = \frac{5\pi}{2}:\]
\[y(x - T) = \sin{\frac{4}{5}\left( x - \frac{5\pi}{2} \right)} =\]
\[= \sin\left( \frac{4x}{5} - 2\pi \right) = \sin\frac{4x}{5} = y(x);\]
\[y(x + T) = \sin{\frac{4}{5}\left( x + \frac{5\pi}{2} \right)} =\]
\[= \sin\left( \frac{4x}{5} + 2\pi \right) = \sin\frac{4x}{5} = y(x).\]
\[Что\ и\ требовалось\ доказать.\]