\[1)\ y = \frac{1 + x}{x + 3};\ \ \ x_{0} = - 3:\]
\[\lim_{\begin{matrix} x \rightarrow - 3 \\ x > - 3 \\ \end{matrix}}\frac{1 + x}{x + 3} = \frac{1 - 3}{- 3 + 3} =\]
\[= \frac{- 2}{+ 0} = - \infty;\]
\[\lim_{\begin{matrix} x \rightarrow - 3 \\ x < - 3 \\ \end{matrix}}\frac{1 + x}{x + 3} = \frac{1 - 3}{- 3 + 3} =\]
\[= \frac{- 2}{- 0} = + \infty.\]
\[Ответ:\ \ нет.\]
\[2)\ y = \left\{ \begin{matrix} \frac{x^{2} + 4x + 4}{x + 2}\ при\ x \neq - 2 \\ 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ при\ x = - 2 \\ \end{matrix} \right.\ \]
\[x_{0} = - 2;\]
\[\lim_{x \rightarrow - 2}\frac{x^{2} + 4x + 4}{x + 2} =\]
\[= \lim_{x \rightarrow - 2}\frac{(x + 2)^{2}}{x + 2} =\]
\[= \lim_{x \rightarrow - 2}(x + 2) = 0.\]
\[Ответ:\ \ нет.\]
\[3)\ f(x) = \left\{ \begin{matrix} x^{2} + 4\ при\ x < 2 \\ x + 6\ \ \ при\ x \geq 2 \\ \end{matrix} \right.\ \ \]
\[x_{0} = 2;\]
\[\lim_{\begin{matrix} x \rightarrow 2 \\ x < 2 \\ \end{matrix}}\left( x^{2} + 4 \right) = 4 + 4 = 8;\]
\[\lim_{\begin{matrix} x \rightarrow 2 \\ x > 2 \\ \end{matrix}}(x + 6) = 2 + 6 = 8.\]
\[Ответ:\ \ да.\]
\[4)\ f(x) = \left\{ \begin{matrix} \sin x\text{\ \ \ \ \ \ \ \ \ \ \ \ \ }при\ x < \pi \\ 6 + |x - \pi|\ при\ x \geq \pi \\ \end{matrix} \right.\ \]
\[x_{0} = \pi;\]
\[\lim_{\begin{matrix} x \rightarrow \pi \\ x < \pi \\ \end{matrix}}{\sin x} = \sin\pi = 0;\]
\[\lim_{\begin{matrix} x \rightarrow \pi \\ x > \pi \\ \end{matrix}}\left( 6 + |x - \pi| \right) = 6 + 0 = 6.\]
\[Ответ:\ \ нет.\]